- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources6
- Resource Type
-
0003000003000000
- More
- Availability
-
60
- Author / Contributor
- Filter by Author / Creator
-
-
Luu, Khoa (6)
-
Truong, Thanh-Dat (6)
-
Le, Ngan (4)
-
Duong, Chi Nhan (3)
-
Bui, Quoc-Huy (1)
-
Bui, Tien D. (1)
-
Chappa, Naga Venkata (1)
-
Chappa, Ravi Teja (1)
-
Dowling, Ashley P.G. (1)
-
Helton, Pierce (1)
-
Huang, Miaoqing (1)
-
Jalata, Ibsa (1)
-
Li, Xin (1)
-
Liang, Yi (1)
-
Nguyen, Pha (1)
-
Nguyen, Xuan-Bac (1)
-
Phung, Son Lam (1)
-
Quach, Kha Gia (1)
-
Rainwater, Chase (1)
-
Seo, Han-Seok (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Nguyen, Pha; Truong, Thanh-Dat; Huang, Miaoqing; Liang, Yi; Le, Ngan; Luu, Khoa (, 2022 IEEE International Conference on Image Processing (ICIP))
-
Truong, Thanh-Dat; Chappa, Ravi Teja; Nguyen, Xuan-Bac; Le, Ngan; Dowling, Ashley P.G.; Luu, Khoa (, 2022 26th International Conference on Pattern Recognition (ICPR))
-
Jalata, Ibsa; Chappa, Naga Venkata; Truong, Thanh-Dat; Helton, Pierce; Rainwater, Chase; Luu, Khoa (, IEEE Access)
-
Truong, Thanh-Dat; Bui, Quoc-Huy; Duong, Chi Nhan; Seo, Han-Seok; Phung, Son Lam; Li, Xin; Luu, Khoa (, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR))
-
Truong, Thanh-Dat; Duong, Chi Nhan; Tran, Minh-Triet; Le, Ngan; Luu, Khoa (, Future Internet)Flow-based generative models have recently become one of the most efficient approaches to model data generation. Indeed, they are constructed with a sequence of invertible and tractable transformations. Glow first introduced a simple type of generative flow using an invertible 1×1 convolution. However, the 1×1 convolution suffers from limited flexibility compared to the standard convolutions. In this paper, we propose a novel invertible n×n convolution approach that overcomes the limitations of the invertible 1×1 convolution. In addition, our proposed network is not only tractable and invertible but also uses fewer parameters than standard convolutions. The experiments on CIFAR-10, ImageNet and Celeb-HQ datasets, have shown that our invertible n×n convolution helps to improve the performance of generative models significantly.more » « less
An official website of the United States government
